		$\begin{array}{r} \text { Mar } \\ \text { 2023-202 } \end{array}$			
Accelerated Grade 6/7 Mathematics					
Unit title	Unit 2: Rational Exploration: Numbers and their Opposites	MYP year	1	Unit duration (hrs)	20 hours
Mastering Content and Skills through INQUIRY (Establishing the purpose of the Unit): What will students learn?					
GA DoE Standards					
Standards					
6.NR.3: Solve a variety of problems involving whole numbers and their opposites; model rational numbers on a number line to describe problems presented in relevant, mathematical situations.					
6.NR.3.1 Identify and compare integers and explain the meaning of zero based on multiple authentic situations.					
6.NR.3.2 Order and plot integers on a number line and use distance from zero to discover the connection between integers and their opposites.					
6.NR.3.3 Recognize and explain that opposite signs of integers indicate locations on opposite sides of zero on the number line; recognize and explain that the opposite of the opposite of a number is the number itself.					
6.NR.3.4 Write, interpret, and explain statements of order for rational numbers in authentic, mathematical situations. Compare rational numbers, including integers, using equality and inequality symbols.					
6.NR.3.5 Explain the absolute value of a rational number as its distance from zero on the number line; interpret absolute value as distance for a positive or negative quantity in a relevant situation.					
6.NR.3.6 Distinguish comparisons of absolute value from statements about order.					
7.NR.1.1 Show that a number and its opposite have a sum of 0 (are additive inverses). Describe situations in which opposite quantities combine to make 0 .					
MCS.Gifted.S2B. Develop and apply the cognitive components of creative thinking: fluency, flexibility, originality, and elaboration.					
MCS.Gifted.S2D. Apply components of creative thinking in finding, solving, and evaluating solutions to authentic real-world problems and dilemmas.					
MCS.Gifted.S3C Use a variety of strategies for solving authentic, complex, real world problems through evaluative thinking and the engineering design processes.					
MCS.Gifted.S4B Recognize and examine the value of others strengths, thoughts, ideas, and feelings during collaboration.					
MCS.Gifted.S4D Respectfully collaborate and effectively communicate exchanges of constructive/critical feedback.					
MCS.Gifted.S6 Students will become self-directed, independent learners.					
Concepts/Skills to support mastery of standards					

[^0]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
6.NR.3.1	Identify and compare integers and explain the meaning of zero based on multiple authentic situations.	Relevance and Application - Students should be able to use numerical reasoning to explain that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, debits/credits, positive/negative electric charge). - Students should be able to use positive and negative numbers to represent quantities in authentic situations and explain the meaning of zero based on each situation. - Students should be able to interpret relevant, mathematical problems related to positive and negative numbers.		Example - Write $-5^{\circ} \mathrm{C}>-9^{\circ} \mathrm{C}$ to express the fact that $-5^{\circ} \mathrm{C}$ is warmer than $-9^{\circ} \mathrm{C}$.	
6.NR.3.2	Order and plot integers on a number line and use distance from zero to discover the connection between integers and their opposites.	Strategies and Methods - Students should have opportun visual models to develop a deep - Number lines should be indicate	ies to explore this concept using r understanding. both vertically and horizontally.	Example Stu dist eac	ts should be able to recognize that -a is the same from zero as a, and therefore, are opposites of her.
6.NR.3.3	Recognize and explain that opposite signs of integers indicate locations on opposite sides of zero on the number line; recognize and explain that the opposite of the opposite of a number is the number itself.	Fundamentals - Students should be able to expl - Students should be able to expl - Students should be able to show	n that zero is its own opposite. n that the sign of an integer repre and explain why $-(-a)=a$. Which	nts its position is read as, "The	ive to zero on a number line. site of the opposite of a is the same as a."
6.NR.3.4	Write, interpret, and explain statements of order for rational numbers in authentic,	Strategies and Methods - Students should be able to use numerical reasoning to interpret and explain the	Terminology - Rational numbers are be written as a fraction	mbers that can where the	Examples - Write -3 degrees Celsius >-7 degrees Celsius to express the fact that -3 degree Celsius is warmer than -7 degrees Celsius.

[^1]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

	mathematical situations. Compare rational numbers, including integers, using equality and inequality symbols.	meaning of numerical statements of inequality as the relative position of two integers positioned on a number line. - Students are introduced to rational numbers. Students should connect their understanding of fractions and integers to comprehend rational numbers as numbers that can be written as a fraction where the numerator and denominator are integers.	numerator and denominator are integers.	- Interpret -8.3 > -12.3 as a statement that -8.3 is located to the right of -12.3 on a number line oriented from left to right.
6.NR.3.5	Explain the absolute value of a rational number as its distance from zero on the number line; interpret absolute value as distance for a positive or negative quantity in a relevant situation.	Terminology - Absolute value is a number's distance from zero (0) on a number line.	Fundamentals - Students should be introduced to the absolute value symbol with this learning objective, i.e., $\left\|-\frac{3}{4}\right\|$. - Students should conclude through exploration that absolute value and distance are always expressed as a positive value.	Example - For an account balance of -51.25 dollars, write $\|-51.25\|=51.25$ to describe the size of the debt in dollars.
6.NR.3.6	Distinguish comparisons of absolute value from statements about order.	Example - Recognize that an account	less than -30 dollars represents a debt great	n 30 dollars.

7.NR.1.3	Represent addition and subtraction with rational numbers on a horizontal or a vertical number line diagram to solve authentic problems.

Strategies and Methods

- Students should represent a variety of types of rational numbers on a number line diagram presented both horizontally and vertically.

Vocabulary:

K12 Mathematics Glossary

Absolute Value	Negative Numbers	Distance	Opposite	Inequality	Positive Numbers
Integers	Rational Number	Magnitude	Sign		

Published: August, 2023
Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

Key concept	Related concept(s)	Global context
Relationships The connections and associations between properties, objects, people and ideas	Equivalence, Generalization	Identities and Relationships
Statement of inquiry		
Modeling using a logical process helps us to understand the world.		
Inquiry questions		
Factual - Why is it useful for me to know the absolute value of a number? - Where do I place positive and negative rational numbers on the number line? - What are opposites, and how are opposites shown on a number line? - How do statements of inequality help me place numbers on a number line? - How can I use number lines to find the distances between points? Conceptual - How do I use positive and negative numbers to represent quantities in real-world contexts? - How do we use the concept of absolute value to describe real-world scenarios? - How do statements of inequality describe real-world situations? - What kind of real-world situations have I encountered that are described by an inequality? - How do I use positive and negative numbers in everyday life? Debatable - Do negative numbers describe things or situations that are negative?		
MYP Objectives		

[^2]| What specific MYP obiectives will be addressed during this unit? | Relationship between summative assessment task(s) and statement of inquiry: | List of common formative and summative assessments. |
| :---: | :---: | :---: |
| Criteria C (Communication) Criteria D (Applying Math to real-world context) | Students will understand, interpret, write, and explain the relationships between numbers: positive, negative, and rational numbers using a number line, coordinate plane, and absolute value. | Formative Assessment(s):
 Unit 2 CFA
 Summative Assessment(s):
 Unit 2 Summative
 MYP: Google Maps Latin America Tour |
| Approaches to learning (ATL) | | |
| Category: Social
 Cluster: Collaboration Skills
 Skill Indicator:
 Give and receive meaningful fee
 Category: Communication
 Cluster: Communication
 Skill Indicator: Organize and de | t information logically | |

[^3]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

Learning Experiences

Add additional rows below as needed.

Objective or Content	Learning Experiences	Personalized Learning and Differentiation
6.NR.3.4 Write, interpret, and explain statements of order for rational numbers in authentic, mathematical situations. Compare rational numbers, including integers, using equality and inequality symbols. 6.NR.3.6 Distinguish comparisons of absolute value from statements about order	Symbols of Inequality In this task, students will plot points on number lines - vertical and horizontal -and will use absolute value to determine the distance between two points. In addition, students will write inequality statements to show the relationship between two numbers.	Prior to the learning experience, teachers may establish mathematical learning goals in order to focus student attention on the learning. Physical number lines can be provided or drawn out to provide an extra layer of support for students in need.

Content Resources

6-11 Savvas Correlation to 2021 standards

GaDoe Intervention Table of Tasks/Activities

Additional Resources

- Savvas
- Desmos
- Hands-On Math

[^4]
[^0]: Published: August, 2023

[^1]: Published: August, 2023

[^2]: Published: August, 2023
 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

[^3]: Published: August, 2023

[^4]: Published: August, 2023
 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

